3,025 research outputs found

    The potato R locus codes for dihydroflavonol 4-reductase

    Get PDF
    The potato R locus is required for the production of red pelargonidin-based anthocyanin pigments in potato (Solanum tuberosum L.). Red color also requires tissue-specific regulatory genes, such as D (for expression in tuber skin) and F (expression in flowers). A related locus, P, is required for production of blue/purple anthocyanins; P is epistatic to R. We have previously reported that the dihydroflavonol 4-reductase gene (dfr) co-segregates with R. To test directly whether R corresponds to dfr, we placed the allele of dfr associated with red color under the control of the CaMV 35S promoter and introduced it into the potato cultivar Prince Hairy (genotype dddd rrrr P-), which has white tubers and pale blue flowers. Transgenic Prince Hairy tubers remained white, but flower color changed to purple. Three independent transgenic lines, as well as a vector-transformed line, were then crossed with the red-skinned variety Chieftain (genotype D-R-pppp), to establish populations that segregated for D, R, P, and the dfr transgene or empty vector. Markers were used to genotype progeny at D and R. Progeny carrying the empty vector in the genetic background D-rrrr produced white or purple tubers, while progeny with the same genotype and the dfr transgene produced red or purple tubers. HPLC and LC–MS/MS analyses of anthocyanins present in Chieftain and in a red-skinned progeny clone with the dfr transgene in a D-rrrr background revealed no qualitative differences. Thus, dfr can fully complement R, both in terms of tuber color and anthocyanin composition

    Taenia solium Infections in a Rural Area of Eastern Zambia-A Community Based Study

    Get PDF
    Taenia solium taeniosis/cysticercosis is a zoonotic infection endemic in many developing countries, with humans as the definitive host (taeniosis) and pigs and humans as the intermediate hosts (cysticercosis). When humans act as the intermediate host, the result can be neurocysticercosis, which is associated with acquired epilepsy, considerable morbidity and even mortality. In Africa, most studies have been carried out in pigs with little or no data in humans available. In this human study, conducted in a rural community in Eastern Zambia, prevalences for taeniosis and cysticercosis were determined at 6.3% and 5.8% respectively, indicating the hyperendemicity of the area. Cysticercosis infection was strongly related with age, with a significant increase in prevalence occurring in individuals from the age of 30 onward. A collected tapeworm was confirmed to be T. solium. Risk factors associated with the transmission and maintenance of the parasite such as free roaming pigs, households without latrines, backyard slaughter of pigs without inspection and consumption of undercooked pork were also present. The findings of this work have identified the need for further research in the transmission dynamics and the burden that this infection has on the resources of poor local people

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin

    Neuroanatomy and cadaver dissection in Italy: History, medicolegal issues, and neurosurgical perspectives.

    Get PDF
    Despite the significant Italian tradition of important anatomical studies, an outdated law historically influenced by the Catholic church restricts the use of cadavers for teaching and scientific purposes. The object of the present paper was to trace the historical evolution of the Italian anatomical tradition, particularly neuroanatomical studies, in relation to the juridical regulations on the use of cadavers today. Special attention was paid to the opportunities offered to neurosurgery by using cadavers and to the scientific and social issues in neurosurgical training in the twenty-first century. Considering the new Common European Constitution, the authors advocate a political solution from the European community to improve the quality of training in the disciplines with a social impact such as neurosurgery

    Radio Emission from Ultra-Cool Dwarfs

    Full text link
    The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag

    Most Patients with Colorectal Tumors at Young Age Do Not Visit a Cancer Genetics Clinic

    Get PDF
    Contains fulltext : 70595.pdf (publisher's version ) (Open Access)PURPOSE: This study examined the referral process for genetic counseling at a cancer genetics clinic in patients with colorectal cancer and to search for determinants of variation in this referral process. METHODS: Patients who were recently diagnosed with colorectal cancer at a young age or multiple cancers associated with Lynch syndrome, hereditary nonpolyposis colorectal cancer, (N = 119) were selected from PALGA, the nationwide network and registry of histopathology and cytopathology in the Netherlands. In a retrospective analysis, we examined whether these patients visited a cancer genetics clinic and identified determinants for referral to such a clinic. Factors of patients, professional practice, and hospital setting were explored with logistic regression modeling. RESULTS: Thirty-six (30 percent) patients visited a cancer genetics clinic. Seventy percent of patients whom the surgeon referred to a cancer genetics clinic decided to visit such a clinic. Analysis of determinants showed that patients with whom the surgeon discussed referral and that were treated in a teaching hospital were more likely to visit a cancer genetics clinic. CONCLUSION: The referral process is not optimally carried out. To deliver optimal care for patients suspected of hereditary colorectal cancer, this process must be improved with interventions focusing on patient referral by surgeons and raising awareness in nonteaching hospitals

    KRAS, BRAF and PIK3CA Mutations and the Loss of PTEN Expression in Chinese Patients with Colorectal Cancer

    Get PDF
    Background: To investigate the frequency and relationship of the KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer (CRC). Methodology/Principal Findings: Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE) tissues of 69 patients with histologically confirmed CRC. Automated sequencing analysis was conducted to detect mutations in the KRAS (codons 12, 13, and 14), BRAF (codon 600) and PIK3CA (codons 542, 545 and 1047). PTEN protein expression was evaluated by immunohistochemistry on 3 mm FFPE tissue sections. Statistical analysis was carried out using SPSS 16.0 software. The frequency of KRAS, BRAF and PIK3CA mutations and loss of PTEN expression was 43.9 % (25/57), 25.4 % (15/59), 8.2 % (5/61) and 47.8 % (33/69), respectively. The most frequent mutation in KRAS, BRAF and PIK3CA was V14G (26.7 % of all mutations), V600E (40.0 % of all mutations) and V600L (40.0 % of all mutations), and H1047L (80.0 % of all mutations), respectivly. Six KRAS mutatant patients (24.0%) harbored BRAF mutations. BRAF and PIK3CA mutations were mutually exclusive. No significant correlation was observed between the four biomarkers and patients ’ characteristics. Conclusions/Significance: BRAF mutation rate is much higher in this study than in other studies, and overlap a lot with KRAS mutations. Besides, the specific types of KRAS and PIK3CA mutations in Chinese patients could be quite different from that of patients in other countries. Further studies are warranted to examine their impact on prognosis and response to targete

    The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin

    Get PDF
    A dominant allele at the D locus (also known as I in diploid potato) is required for the synthesis of red and purple anthocyanin pigments in tuber skin. It has previously been reported that D maps to a region of chromosome 10 that harbors one or more homologs of Petuniaan2, an R2R3 MYB transcription factor that coordinately regulates the expression of multiple anthocyanin biosynthetic genes in the floral limb. To test whether D acts similarly in tuber skin, RT-PCR was used to evaluate the expression of flavanone 3-hydroxylase (f3h), dihydroflavonol 4-reductase (dfr) and flavonoid 3′,5′-hydroxylase (f3′5′h). All three genes were expressed in the periderm of red- and purple-skinned clones, while dfr and f3′5′h were not expressed, and f3h was only weakly expressed, in white-skinned clones. A potato cDNA clone with similarity to an2 was isolated from an expression library prepared from red tuber skin, and an assay developed to distinguish the two alleles of this gene in a diploid potato clone known to be heterozygous Dd. One allele was observed to cosegregate with pigmented skin in an F1 population of 136 individuals. This allele was expressed in tuber skin of red- and purple-colored progeny, but not in white tubers, while other parental alleles were not expressed in white or colored tubers. The allele was placed under the control of a doubled 35S promoter and transformed into the light red-colored cultivar Désirée, the white-skinned cultivar Bintje, and two white diploid clones known to lack the functional allele of D. Transformants accumulated pigment in tuber skin, as well as in other tissues, including young foliage, flower petals, and tuber flesh
    corecore